Energy transition
(2021). Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues. Renewable and Sustainable Energy Reviews 138, 110549. doi: https://doi.org/10.1016/j.rser.2020.110549 – Energy transition.
(2021). Attosecond state-resolved carrier motion in quantum materials probed by soft x-ray XANES. Applied Physics Reviews 8, 011408. doi: http://dx.doi.org/10.1063/5.0020649 – Energy transition.
(2021). Natural Fibre Polymer Composites – A game changer for the aviation sector? Journal of Cleaner Production 286, 124986. doi: https://doi.org/10.1016/j.jclepro.2020.124986 – Energy transition.
(2021). Flax fiber for technical textile: A life cycle inventory. Journal of Cleaner Production 281, 125177. doi: https://doi.org/10.1016/j.jclepro.2020.125177 – Energy transition.
(2021). Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation. Renewable and Sustainable Energy Reviews 135. doi: http://dx.doi.org/10.1016/j.rser.2020.110189 – Energy transition.
(2021). Harnessing the full potential of biomethane towards tomorrow’s bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analysis. Renewable and Sustainable Energy Reviews 138, 110506. doi: https://doi.org/10.1016/j.rser.2020.110506 – Energy transition.
(2021). Crop residues may be a key feedstock to bioeconomy but how reliable are current estimation methods? Resources, Conservation and Recycling 164, 105211. doi: https://doi.org/10.1016/j.resconrec.2020.105211 – Energy transition.
(2021). Electric field-driven one-step formation of vertical p–n junction TiO2 nanotubes exhibiting strong photocatalytic hydrogen production. Journal of Materials Chemistry A 9, 2239-2247. doi: http://dx.doi.org/10.1039/D0TA10062E – Energy transition.
(2020). Four scenarios of the energy transition: Drivers, consequences, and implications for geopolitics. WIREs Climate Change 11, e625. doi: https://doi.org/10.1002/wcc.625 – Energy transition.
(2020). Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms. Energy & Fuels 34, 14232-14248. doi: http://dx.doi.org/10.1021/acs.energyfuels.0c02901 – Energy transition.
(2020). Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction. Nano Energy 67, 104245. doi: https://doi.org/10.1016/j.nanoen.2019.104245 – Energy transition.
(2020). Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction. Nano Energy 67, 104245. doi: https://doi.org/10.1016/j.nanoen.2019.104245 – Energy transition.
(2020). Discrete dispersion scan setup for measuring few-cycle laser pulses in the mid-infrared. Optics Letters 45, 5295-5298. doi: http://dx.doi.org/10.1364/OL.403362 – Energy transition.
(2020). Comment: Protect global supply chains for low-carbon technologies. In Nature, pp. 28-30. doi:https://www.nature.com/articles/d41586-020-02499-8 – Energy transition.
(2020). The Global Energy Transition and the Global South. In: The Geopolitics of the Global Energy Transition, Hafner, M. & Tagliapietra, S., ed(s). Cham, Springer International Publishing. pp. 319-339. doi: http://dx.doi.org/10.1007/978-3-030-39066-2_14 – Energy transition.
(2020). Bis(alkyl) scandium and yttrium complexes coordinated by an amidopyridinate ligand: synthesis, characterization and catalytic performance in isoprene polymerization, hydroelementation and carbon dioxide hydrosilylation. Dalton Transactions 49, 638-650. doi: http://dx.doi.org/10.1039/c9dt04338a – Energy transition.
(2020). Partial Dehydration in Hydrated Tungsten Oxide Nanoplates Leads to Excellent and Robust Bifunctional Oxygen Reduction and Hydrogen Evolution Reactions in Acidic Media. Acs Sustainable Chemistry & Engineering 8, 9507-9518. doi: http://dx.doi.org/10.1021/acssuschemeng.0c02502 – Energy transition.
(2020). Agricultural residues bioenergy potential that sustain soil carbon depends on energy conversion pathways. GCB Bioenergy 12, 1002-1013. doi: https://doi.org/10.1111/gcbb.12733 – Energy transition.
(2020). Heterostructured Monolayer MoS2 Nanoparticles toward Water-Dispersible Catalysts. Acs Applied Materials & Interfaces 12, 19813-19822. doi: http://dx.doi.org/10.1021/acsami.0c02246 – Energy transition.
(2020). Manipulatable Interface Electric Field and Charge Transfer in a 2D/2D Heterojunction Photocatalyst via Oxygen Intercalation. Catalysts 10, 469. doi: http://dx.doi.org/10.3390/catal10050469 – Energy transition.
(2020). Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues. Renewable and Sustainable Energy Reviews 134, 110350. doi: https://doi.org/10.1016/j.rser.2020.110350 – Energy transition.
(2020). Self-assembled heterojunction of metal sulfides for improved photocatalysis. Chemical Engineering Journal 395, 125092. doi: https://doi.org/10.1016/j.cej.2020.125092 – Energy transition.
(2020). Mapping Point Defects of Brookite TiO2 for Photocatalytic Activity Beyond Anatase and P25. The Journal of Physical Chemistry C 124, 10376-10384. doi: http://dx.doi.org/10.1021/acs.jpcc.0c02091 – Energy transition.
(2020). ALD-assisted synthesis of V2O5 nanoislands on SnO2 nanowires for improving NO2 sensing performance. Applied Surface Science 509, 144821. doi: https://doi.org/10.1016/j.apsusc.2019.144821 – Energy transition.
(2020). Bound States in the Continuum for Enhanced Generation of High Optical Harmonics. Proceedings of the Washington, DC, 2020/07/13. OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF): NpM3E.1. doi: http://dx.doi.org/10.1364/NP.2020.NpM3E.1. – Energy transition.
(2020). Electronic structure, thermodynamic stability and high-temperature sensing properties of Er-a-SiAlON ceramics. Scientific Reports 10, 4952. doi: http://dx.doi.org/10.1038/s41598-020-61105-z – Energy transition.
(2020). Covid-19 and the politics of sustainable energy transitions. Energy Research & Social Science 68, 101685. doi: https://doi.org/10.1016/j.erss.2020.101685 – Energy transition.
(2020). Unsymmetrical Small Molecules for Broad-Band Photoresponse and Efficient Charge Transport in Organic Phototransistors. Acs Applied Materials & Interfaces 12, 25066-25074. doi: http://dx.doi.org/10.1021/acsami.0c02229 – Energy transition.
(2020). Few-Layer In2S3 in Laponite Interlayers: A Colloidal Route Toward Heterostructured Nanohybrids with Enhanced Photocatalysis. Chemistry of Materials 32, 10015-10024. doi: http://dx.doi.org/10.1021/acs.chemmater.0c03207 – Energy transition.
(2020). Benzothiazolium-functionalizedNU-1000: a versatile material for carbon dioxide adsorption and cyanide luminescence sensing. Journal of Materials Chemistry C 8, 7492-7500. doi: http://dx.doi.org/10.1039/d0tc01436b – Energy transition.
(2020). Boosting nitrogen-doping and controlling interlayer spacing in pre-reduced graphene oxides. Nano Energy 78, 105286. doi: https://doi.org/10.1016/j.nanoen.2020.105286 – Energy transition.
(2020). Rationally designed CuSb1-xBixS2 as a promising photovoltaic material: Theoretical and experimental study. Scripta Materialia 179, 107-112. doi: https://doi.org/10.1016/j.scriptamat.2020.01.008 – Energy transition.
(2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of The Total Environment 706, 136033. doi: https://doi.org/10.1016/j.scitotenv.2019.136033 – Energy transition.
(2020). Nonlinear ionization dynamics of hot dense plasma observed in a laser-plasma amplifier. Light: Science & Applications 9, 187. doi: http://dx.doi.org/10.1038/s41377-020-00424-2 – Energy transition.
(2020). Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Materials 8, 070901. doi: http://dx.doi.org/10.1063/5.0011851 – Energy transition.
(2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today 357, 214-220. doi: http://dx.doi.org/10.1016/j.cattod.2019.02.050 – Energy transition.
(2020). Theoretical dopant screening and processing optimization for vanadium disulfide as cathode material for Li-air batteries: A density functional theory study. Applied Surface Science 508, 145276. doi: https://doi.org/10.1016/j.apsusc.2020.145276 – Energy transition.
(2020). Efficient High-order Optical Harmonics Generation from Resonant Semiconductor Metasurfaces Supporting Bound States in the Continuum. Proceedings of the Washington, DC, 2020/09/14. Frontiers in Optics / Laser Science: FTh5D.4. doi: http://dx.doi.org/10.1364/FIO.2020.FTh5D.4 – Energy transition.
(2020). High-Harmonic Generation in Dielectric Metasurfaces Empowered by Bound States in the Continuum. Proceedings of the Washington, DC, 2020/05/10. Conference on Lasers and Electro-Optics: FTh1C.5. doi: http://dx.doi.org/10.1364/CLEO_QELS.2020.FTh1C.5 – Energy transition.
(2019). Second Youth of a Metal-Free Dehydrogenation Catalyst: When gamma-Al2O3 Meets Coke Under Oxygen- and Steam-Free Conditions. Acs Catalysis 9, 9474-9484. doi: http://dx.doi.org/10.1021/acscatal.9b02555 – Energy transition.
(2019). Hydrogenolysis of Dinuclear PCN (R) Ligated Pd-II mu-Hydroxides and Their Mononuclear Pd-II Hydroxide Analogues. Chemistry-a European Journal 25, 9920-9929. doi: http://dx.doi.org/10.1002/chem.201900507 – Energy transition.
(2019). Comment: Model and manage the changing geopolitics of energy. In Nature, pp. 29-31. doi:https://www.nature.com/articles/d41586-019-01312-5 – Energy transition.
(2019). Engineered Nitrogen-Decorated Carbon Networks for the Metal-Free Catalytic Isomerization of Glucose to Fructose. Acs Sustainable Chemistry & Engineering 7, 16959-16963. doi: http://dx.doi.org/10.1021/acssuschemeng.9b04067 – Energy transition.
(2019). p-Type Conductivity of Hydrated Amorphous V2O5 and Its Enhanced Photocatalytic Performance in ZnO/V2O5/rGO. ACS Applied Electronic Materials 1, 1881-1889. doi: http://dx.doi.org/10.1021/acsaelm.9b00397 – Energy transition.
(2019). Material design for Ge2Sb2Te5 phase-change material with thermal stability and lattice distortion. Scripta Materialia 170, 16-19. doi: https://doi.org/10.1016/j.scriptamat.2019.05.024 – Energy transition.
(2019). Interface-Driven Phase Transition of Phase-Change Material. Crystal Growth & Design 19, 2123-2130. doi: http://dx.doi.org/10.1021/acs.cgd.8b01690 – Energy transition.
(2019). The existence and impact of persistent ferroelectric domains in MAPbI 3. Science Advances 5, eaas9311. doi: http://dx.doi.org/10.1126/sciadv.aas9311 – Energy transition.
(2019). A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renewable and Sustainable Energy Reviews 100, 127-142. doi: https://doi.org/10.1016/j.rser.2018.10.017 – Energy transition.
(2019). Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy & Environmental Science 12, 2443-2454. doi: http://dx.doi.org/10.1039/C9EE00950G – Energy transition.
(2019). Water Splitting: Electronically Double-Layered Metal Boride Hollow Nanoprism as an Excellent and Robust Water Oxidation Electrocatalysts (Adv. Energy Mater. 13/2019). Advanced Energy Materials 9, 1970038. doi: https://doi.org/10.1002/aenm.201970038 – Energy transition.
(2019). Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources. Structural Dynamics 6, 010902. doi: http://dx.doi.org/10.1063/1.5082686 – Energy transition.
(2019). Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. Journal of Materials Chemistry A 7, 3592-3602. doi: http://dx.doi.org/10.1039/C8TA10142F – Energy transition.
(2019). Improving Electrochemical Pb2+ Detection Using a Vertically Aligned 2D MoS2 Nanofilm. Analytical Chemistry 91, 11770-11777. doi: http://dx.doi.org/10.1021/acs.analchem.9b02382 – Energy transition.
(2019). Amine additive reactions induced by the soft Lewis acidity of Pb 2+ in halide perovskites. Part I: evidence for Pb–alkylamide formation. Journal of Materials Chemistry C 7, 5251-5259. doi: http://dx.doi.org/10.1039/c8tc04871a – Energy transition.
(2019). Amine additive reactions induced by the soft Lewis acidity of Pb 2+ in halide perovskites. Part II: impacts of amido Pb impurities in methylammonium lead triiodide thin films. Journal of Materials Chemistry C 7, 5244-5250. doi: http://dx.doi.org/10.1039/c8tc04872j – Energy transition.
(2019). Reactions at noble metal contacts with methylammonium lead triiodide perovskites: Role of underpotential deposition and electrochemistry. APL Materials 7, 041103. doi: http://dx.doi.org/10.1063/1.5083812 – Energy transition.
(2019). Laser-engineered oxygen vacancies for improving the NO2 sensing performance of SnO2 nanowires. Journal of Materials Chemistry A 7, 27205-27211. doi: http://dx.doi.org/10.1039/C9TA06578D – Energy transition.
(2019). Electronically-Coupled Phase Boundaries in a-Fe2O3/Fe3O4 Nanocomposite Photoanodes for Enhanced Water Oxidation. ACS Applied Nano Materials 2, 334-342. doi: http://dx.doi.org/10.1021/acsanm.8b01936 – Energy transition.
(2019). High Versatility and Stability of Mechanochemically Synthesized Halide Perovskite Powders for Optoelectronic Devices. Acs Applied Materials & Interfaces 11, 30259-30268. doi: http://dx.doi.org/10.1021/acsami.9b09160 – Energy transition.
(2019). Ammonia borane and hydrazine bis(borane) dehydrogenation mediated by an unsymmetrical (PNN) ruthenium pincer hydride: metal-ligand cooperation for hydrogen production. Sustainable Energy & Fuels 3, 2583-2596. doi: http://dx.doi.org/10.1039/c9se00241c – Energy transition.
(2019). Benzoimidazole-Pyridylamido Zirconium and Hafnium Alkyl Complexes as Homogeneous Catalysts for Tandem Carbon Dioxide Hydrosilylation to Methane. Chemcatchem 11, 495-510. doi: http://dx.doi.org/10.1002/cctc.201800077 – Energy transition.
(2019). H-2 production from lightweight inorganic hydrides catalyzed by 3d transition metals. International Journal of Hydrogen Energy 44, 25746-25776. doi: http://dx.doi.org/10.1016/j.ijhydene.2019.08.017 – Energy transition.
(2019). Imidazole-Bridged Tetrameric Group(IV) Heteroleptic Complexes from the Spontaneous Metal-Ligand Assembly of a Potentially N-4-Tetradentate Ligand. European Journal of Inorganic Chemistry 2019, 4384-4393. doi: http://dx.doi.org/10.1002/ejic.201900763 – Energy transition.
(2019). Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Molecular Systems Design & Engineering 4, 1000-1013. doi: http://dx.doi.org/10.1039/c9me00062c – Energy transition.
(2019). In situ reduction and exfoliation of g-C3N4 nanosheets with copious active sites via a thermal approach for effective water splitting. Catalysis Science & Technology 9, 1004-1012. doi: http://dx.doi.org/10.1039/C8CY02318B – Energy transition.
(2019). Stärkung der internationalen Zusammenarbeit für eine globale Energiewende. In IASS Policy Briefs. doi:https://publications.iass-potsdam.de/pubman/item/item_4208893 – Energy transition.
(2019). Advancing a global transition to clean energy – the role of international cooperation. Economics: The Open-Access, Open-Assessment E-Journal 13, 1-18. doi: http://dx.doi.org/10.5018/economics-ejournal.ja.2019-48 – Energy transition.
(2019). Metal-free carbon-based materials for electrocatalytic and photo-electrocatalytic CO2 reduction. Rendiconti Lincei-Scienze Fisiche E Naturali 30, 497-513. doi: http://dx.doi.org/10.1007/s12210-019-00830-8 – Energy transition.
(2019). Halide Perovskites: Is It All about the Interfaces? Chemical Reviews 119, 3349-3417. doi: http://dx.doi.org/10.1021/acs.chemrev.8b00558 – Energy transition.
(2019). Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation and Recycling 149, 413-426. doi: https://doi.org/10.1016/j.resconrec.2019.05.003 – Energy transition.
(2019). Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance. Beilstein Journal of Nanotechnology 10, 1217-1227. doi: http://dx.doi.org/10.3762/bjnano.10.121 – Energy transition.
(2019). Amino-decorated bis(pyrazolate) metal-organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers 6, 533-545. doi: http://dx.doi.org/10.1039/c8qi00997j – Energy transition.
(2019). Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. Acs Applied Materials & Interfaces 11, 26956-26969. doi: http://dx.doi.org/10.1021/acsami.9b08015 – Energy transition.
(2019). Nickel Nanoparticles Decorated Nitrogen-Doped Carbon Nanotubes (Ni/N-CNT); a Robust Catalyst for the Efficient and Selective CO2 Methanation. Acs Applied Energy Materials 2, 1111-1120. doi: http://dx.doi.org/10.1021/acsaem.8b01681 – Energy transition.
(2019). Induction Heating: An Enabling Technology for the Heat Management in Catalytic Processes. Acs Catalysis 9, 7921-7935. doi: http://dx.doi.org/10.1021/acscatal.9b02471 – Energy transition.
(2019). Countering the risk of an uneven low-carbon energy transition. In IASS Policy Briefs. doi:http://dx.doi.org/http://doi.org/10.2312/iass.2019.051 – Energy transition.