Publications
(2021). Climbing down Charney’s ladder: machine learning and the post-Dennard era of computational climate science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, 20200085. doi: http://dx.doi.org/10.1098/rsta.2020.0085 – Earth system science.
(2021). « Science des données » versus science physique : la technologie des données nous conduit-elle vers une nouvelle synthèse ? . Comptes Rendus Géoscience 352, 297-308. doi: https://doi.org/10.5802/crgeos.24 – Earth system science.
(2021). Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues. Renewable and Sustainable Energy Reviews 138, 110549. doi: https://doi.org/10.1016/j.rser.2020.110549 – Energy transition.
(2021). Attosecond state-resolved carrier motion in quantum materials probed by soft x-ray XANES. Applied Physics Reviews 8, 011408. doi: http://dx.doi.org/10.1063/5.0020649 – Energy transition.
(2021). Clustering Species With Residual Covariance Matrix in Joint Species Distribution Models. Frontiers in Ecology and Evolution 9. doi: http://dx.doi.org/10.3389/fevo.2021.601384 – Earth system science.
(2021). Continent-wide tree fecundity driven by indirect climate effects. Nature Communications 12, 1242. doi: http://dx.doi.org/10.1038/s41467-020-20836-3 – Earth system science.
(2021). Retrogressive Thaw Slumps on Ice?Rich Permafrost Under Degradation: Results From a Large?Scale Laboratory Simulation. Geophysical Research Letters. doi: https://doi.org/10.1029/2020GL091070 – Earth system science.
(2021). Natural Fibre Polymer Composites – A game changer for the aviation sector? Journal of Cleaner Production 286, 124986. doi: https://doi.org/10.1016/j.jclepro.2020.124986 – Energy transition.
(2021). Flax fiber for technical textile: A life cycle inventory. Journal of Cleaner Production 281, 125177. doi: https://doi.org/10.1016/j.jclepro.2020.125177 – Energy transition.
(2021). Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation. Renewable and Sustainable Energy Reviews 135. doi: http://dx.doi.org/10.1016/j.rser.2020.110189 – Energy transition.
(2021). Environmental characterization and yield gap analysis to tackle genotype-by-environment-by-management interactions and map region-specific agronomic and breeding targets in groundnut. Field Crops Research 267, 108160. doi: https://doi.org/10.1016/j.fcr.2021.108160 – Climate change.
(2021). Harnessing the full potential of biomethane towards tomorrow’s bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analysis. Renewable and Sustainable Energy Reviews 138, 110506. doi: https://doi.org/10.1016/j.rser.2020.110506 – Energy transition.
(2021). Food security and climate shocks in Senegal: Who and where are the most vulnerable households? Global Food Security 29, 100513. doi: https://doi.org/10.1016/j.gfs.2021.100513 – Climate change.
(2021). Biotic and abiotic transformation of amino acids in cloud water: Experimental studies and atmospheric implications. Biogeosciences 18, 1067-1080. doi: http://dx.doi.org/10.5194/bg-2020-250 – Earth system science.
(2021). On Wind-Driven Energetics of Subtropical Gyres. Journal of Advances in Modeling Earth Systems 13, e2020MS002329. doi: https://doi.org/10.1029/2020MS002329 – Earth system science.
(2021). Crop residues may be a key feedstock to bioeconomy but how reliable are current estimation methods? Resources, Conservation and Recycling 164, 105211. doi: https://doi.org/10.1016/j.resconrec.2020.105211 – Energy transition.
(2021). Graphite-type activated carbon from coconut shell: a natural source for eco-friendly non-volatile storage devices. RSC Advances 11, 2854-2865. doi: http://dx.doi.org/10.1039/D0RA09182K – Climate change.
(2021). Electric field-driven one-step formation of vertical p–n junction TiO2 nanotubes exhibiting strong photocatalytic hydrogen production. Journal of Materials Chemistry A 9, 2239-2247. doi: http://dx.doi.org/10.1039/D0TA10062E – Energy transition.
(2021). The impacts of biomass burning aerosols on air quality and convective systems in Southeast Asia. In: Biomass Burning in South and Southeast Asia, Vadrevu, K.P., Ohara, T. & Justice, C., ed(s). CRC Press. pp
(2021). Will Evolving Climate Conditions Increase the Risk of Floods of the Large U.S.-Canada Transboundary Richelieu River Basin? JAWRA Journal of the American Water Resources Association n/a. doi: https://doi.org/10.1111/1752-1688.12891 – Earth system science.
(2021). Seasonal patterns in greenhouse gas emissions from lakes and ponds in a High Arctic polygonal landscape. Limnology and Oceanography 66, S117-S141. doi: https://doi.org/10.1002/lno.11660 – Earth system science.
(2021). Anomalous Tropical Instability Wave activity hindered the development of the 2016/2017 La Niña. Journal of Climate, 1. doi: http://dx.doi.org/10.1175/jcli-d-20-0399.1 Pas sci – Earth system science.
(2020). The Forest Effects on the Isotopic Composition of Rainfall in the Northwestern Amazon Basin. Journal of Geophysical Research: Atmospheres 125, e2019JD031445. doi: https://doi.org/10.1029/2019JD031445 – Climate change.
(2020). Changes in Normalized Difference Vegetation Index in the Orinoco and Amazon River Basins: Links to Tropical Atlantic Surface Temperatures. Journal of Climate 33, 8537-8559. doi: http://dx.doi.org/10.1175/jcli-d-19-0696.1 – Climate change.
(2020). Post-2020 biodiversity targets need to embrace climate change. Proceedings of the National Academy of Sciences 117, 30882-30891. doi: http://dx.doi.org/10.1073/pnas.2009584117 – Climate change.
(2020). Four scenarios of the energy transition: Drivers, consequences, and implications for geopolitics. WIREs Climate Change 11, e625. doi: https://doi.org/10.1002/wcc.625 – Energy transition.
(2020). Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics 58, e2019RG000660. doi: https://doi.org/10.1029/2019RG000660 – Climate change.
(2020). Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents. Science of The Total Environment 724, 138048. doi: https://doi.org/10.1016/j.scitotenv.2020.138048 – Earth system science.
(2020). Epigenetic Approaches in Non-Model Plants. In: Plant Epigenetics and Epigenomics : Methods and Protocols, Spillane, C. & McKeown, P., ed(s). New York, NY, Springer US. pp. 203-215. doi: http://dx.doi.org/10.1007/978-1-0716-0179-2_14. – Earth system science.
(2020). The SPLASH Action Group – Towards standardized sampling strategies in permafrost science. Advances in Polar Science – Opinion Editorial 31, 153-155. doi: http://dx.doi.org/10.13679/j.advps.2020.0009 – Earth system science.
(2020). Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic. The Cryosphere 14, 2607-2627. doi: http://dx.doi.org/10.5194/tc-14-2607-2020 – Earth system science.
(2020). A simple theory for the modulation of tropical instability waves by ENSO and the annual cycle. Tellus A: Dynamic Meteorology and Oceanography 72, 1-14. doi: http://dx.doi.org/10.1080/16000870.2019.1700087 – Earth system science.
(2020). Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms. Energy & Fuels 34, 14232-14248. doi: http://dx.doi.org/10.1021/acs.energyfuels.0c02901 – Energy transition.
(2020). Comparisons of Natural and Cultivated Populations of Corydalis yanhusuo Indicate Divergent Patterns of Genetic and Epigenetic Variation. Frontiers in Plant Science 11. doi: http://dx.doi.org/10.3389/fpls.2020.00985 – Earth System Science.
(2020). Aerosol-enhanced high precipitation events near the Himalayan foothills. Atmos. Chem. Phys. 20, 15389-15399. doi: http://dx.doi.org/10.5194/acp-20-15389-2020 – Climate change.
(2020). The emergent interactions that govern biodiversity change. Proceedings of the National Academy of Sciences 117, 17074-17083. doi: http://dx.doi.org/10.1073/pnas.2003852117 – Earth system science.
(2020). Field-scale management and environmental drivers of N2O emissions from pasture-based dairy systems. Nutrient Cycling in Agroecosystems 117, 299-315. doi: http://dx.doi.org/10.1007/s10705-020-10069-7 – Climate change.
(2020). Late-Pleistocene catchment-wide denudation patterns across the European Alps. Earth-Science Reviews 211, 103407. doi: https://doi.org/10.1016/j.earscirev.2020.103407 – Earth system science.
(2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds. AGU Advances 1, e2019AV000111. doi: https://doi.org/10.1029/2019AV000111 – Climate change.
(2020). Improving N2O emission estimates with the global N2O database. Current Opinion in Environmental Sustainability 47, 13-20. doi: https://doi.org/10.1016/j.cosust.2020.04.006 – Climate change.
(2020). Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction. Nano Energy 67, 104245. doi: https://doi.org/10.1016/j.nanoen.2019.104245 – Energy transition.
(2020). Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction. Nano Energy 67, 104245. doi: https://doi.org/10.1016/j.nanoen.2019.104245 – Energy transition.
(2020). The Impact of Warm and Moist Airmass Perturbations on Arctic Mixed-Phase Stratocumulus. Journal of Climate 33, 9615-9628. doi: http://dx.doi.org/10.1175/jcli-d-20-0163.1 – Climate change.
(2020). The global impact of bacterial processes on carbon mass. Atmospheric Chemistry and Physics 20, 1777-1794. doi: http://dx.doi.org/10.5194/acp-20-1777-2020 – Earth system science.
(2020). Hydroclimate of the Andes Part I: Main Climatic Features. Frontiers in Earth Science 8. doi: http://dx.doi.org/10.3389/feart.2020.00064 – Climate change.
(2020). ENSO low-frequency modulation and mean state interactions. In: El Niño Southern Oscillation in a Changing Climate, McPhaden, M.J., Santoso, A. & Cai, W., ed(s). American Geophysical Union. pp.
(2020). On the relationship between reversal of the river stage (repiquetes), rainfall and low-level wind regimes over the western Amazon basin. Journal of Hydrology: Regional Studies 32, 100752. doi: https://doi.org/10.1016/j.ejrh.2020.100752 – Climate change.
(2020). Measuring denitrification and the N2O:(N2O+N2) emission ratio from terrestrial soils. Current Opinion in Environmental Sustainability 47, 61-71. doi: https://doi.org/10.1016/j.cosust.2020.08.006 – Climate change.
(2020). Effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N-turnover, the N2O reductase-gene nosZ and N2O:N2 partitioning from agricultural soils. Scientific Reports 10, 2399. doi: http://dx.doi.org/10.1038/s41598-020-59249-z – Climate change.
(2020). Discrete dispersion scan setup for measuring few-cycle laser pulses in the mid-infrared. Optics Letters 45, 5295-5298. doi: http://dx.doi.org/10.1364/OL.403362 – Energy transition.
(2020). A First Case Study of CCN Concentrations from Spaceborne Lidar Observations. Remote Sensing 12, 1557. doi: http://dx.doi.org/10.3390/rs12101557 – Climate change.
(2020). Advances in the Lead Time of Sahel Rainfall Prediction With the North American Multimodel Ensemble. Geophysical Research Letters 47, e2020GL087341. doi: https://doi.org/10.1029/2020GL087341 – Climate change.
(2020). Comment: Protect global supply chains for low-carbon technologies. In Nature, pp. 28-30. doi:https://www.nature.com/articles/d41586-020-02499-8 – Energy transition.
(2020). The Global Energy Transition and the Global South. In: The Geopolitics of the Global Energy Transition, Hafner, M. & Tagliapietra, S., ed(s). Cham, Springer International Publishing. pp. 319-339. doi: http://dx.doi.org/10.1007/978-3-030-39066-2_14 – Energy transition.
(2020). Global Research Alliance N2O chamber methodology guidelines: Considerations for automated flux measurement. Journal of Environmental Quality 49, 1126-1140. doi: https://doi.org/10.1002/jeq2.20124 – Climate change.
(2020). Aquaporins are main contributors to root hydraulic conductivity in pearl millet [Pennisetum glaucum (L) R. Br.]. PLoS One 15, e0233481. doi: http://dx.doi.org/10.1371/journal.pone.0233481 – Climate change.
(2020). Bis(alkyl) scandium and yttrium complexes coordinated by an amidopyridinate ligand: synthesis, characterization and catalytic performance in isoprene polymerization, hydroelementation and carbon dioxide hydrosilylation. Dalton Transactions 49, 638-650. doi: http://dx.doi.org/10.1039/c9dt04338a – Energy transition.
(2020). Partial Dehydration in Hydrated Tungsten Oxide Nanoplates Leads to Excellent and Robust Bifunctional Oxygen Reduction and Hydrogen Evolution Reactions in Acidic Media. Acs Sustainable Chemistry & Engineering 8, 9507-9518. doi: http://dx.doi.org/10.1021/acssuschemeng.0c02502 – Energy transition.
(2020). Agricultural residues bioenergy potential that sustain soil carbon depends on energy conversion pathways. GCB Bioenergy 12, 1002-1013. doi: https://doi.org/10.1111/gcbb.12733 – Energy transition.
(2020). The effects of anthropogenic and volcanic aerosols and greenhouse gases on twentieth century Sahel precipitation. Scientific Reports 10, 12203. doi: http://dx.doi.org/10.1038/s41598-020-68356-w – Climate change.
(2020). Indian Ocean warming as a driver of the North Atlantic warming hole. Nature Communications 11. doi: http://dx.doi.org/10.1038/s41467-020-18522-5 – Earth system science.
(2020). Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia). Limnology and Oceanography 66. doi: http://dx.doi.org/10.1002/lno.11665 – Earth system science.
(2020). Biodegradation of phenol and catechol in cloud water: comparison to chemical oxidation in the atmospheric multiphase system. Atmospheric Chemistry and Physics 20, 4987-4997. doi: http://dx.doi.org/10.5194/acp-20-4987-2020 – Earth system science.
(2020). On Energy Cascades in General Flows: A Lagrangian Application. Journal of Advances in Modeling Earth Systems 12, e2020MS002090. doi: https://doi.org/10.1029/2020MS002090 – Earth system science.
(2020). Locally and Remotely Forced Subtropical AMOC Variability: A Matter of Time Scales. Journal of Climate 33, 5155-5172. doi: http://dx.doi.org/10.1175/jcli-d-19-0844.1 – Earth system science.
(2020). Heterostructured Monolayer MoS2 Nanoparticles toward Water-Dispersible Catalysts. Acs Applied Materials & Interfaces 12, 19813-19822. doi: http://dx.doi.org/10.1021/acsami.0c02246 – Energy transition.
(2020). Manipulatable Interface Electric Field and Charge Transfer in a 2D/2D Heterojunction Photocatalyst via Oxygen Intercalation. Catalysts 10, 469. doi: http://dx.doi.org/10.3390/catal10050469 – Energy transition.
(2020). Why future nitrogen research needs the social sciences. Current Opinion in Environmental Sustainability 47, 54-60. doi: https://doi.org/10.1016/j.cosust.2020.07.002 – Climate change.
(2020). Automated discretization of ‘transpiration restriction to increasing VPD’ features from outdoors high-throughput phenotyping data. Plant Methods 16, 20. doi: http://dx.doi.org/10.1186/s13007-020-00680-8 – Climate change.
(2020). Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues. Renewable and Sustainable Energy Reviews 134, 110350. doi: https://doi.org/10.1016/j.rser.2020.110350 – Energy transition.
(2020). Biodegradation by bacteria in clouds: An underestimated sink for some organics in the atmospheric multiphase system. doi:http://dx.doi.org/10.5194/acp-2020-778. – Earth system science.
(2020). Self-assembled heterojunction of metal sulfides for improved photocatalysis. Chemical Engineering Journal 395, 125092. doi: https://doi.org/10.1016/j.cej.2020.125092 – Energy transition.
(2020). Mapping Point Defects of Brookite TiO2 for Photocatalytic Activity Beyond Anatase and P25. The Journal of Physical Chemistry C 124, 10376-10384. doi: http://dx.doi.org/10.1021/acs.jpcc.0c02091 – Energy transition.
(2020). ALD-assisted synthesis of V2O5 nanoislands on SnO2 nanowires for improving NO2 sensing performance. Applied Surface Science 509, 144821. doi: https://doi.org/10.1016/j.apsusc.2019.144821 – Energy transition.
(2020). Bound States in the Continuum for Enhanced Generation of High Optical Harmonics. Proceedings of the Washington, DC, 2020/07/13. OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF): NpM3E.1. doi: http://dx.doi.org/10.1364/NP.2020.NpM3E.1. – Energy transition.
(2020). Electronic structure, thermodynamic stability and high-temperature sensing properties of Er-a-SiAlON ceramics. Scientific Reports 10, 4952. doi: http://dx.doi.org/10.1038/s41598-020-61105-z – Energy transition.
(2020). Covid-19 and the politics of sustainable energy transitions. Energy Research & Social Science 68, 101685. doi: https://doi.org/10.1016/j.erss.2020.101685 – Energy transition.
(2020). The impacts of biomass burning activities on convective systems over the Maritime Continent. Atmospheric Chemistry and Physics 20, 2533-2548. doi: http://dx.doi.org/10.5194/acp-20-2533-2020 – Earth system science.
(2020). Country-scale trends in air pollution and fossil fuel CO2 emissions during 2001–2018: confronting the roles of national policies and economic growth. Environmental Research Letters 16. doi: http://dx.doi.org/10.1088/1748-9326/abc9e1 – Climate change.
(2020). Unsymmetrical Small Molecules for Broad-Band Photoresponse and Efficient Charge Transport in Organic Phototransistors. Acs Applied Materials & Interfaces 12, 25066-25074. doi: http://dx.doi.org/10.1021/acsami.0c02229 – Energy transition.
(2020). ENSO and Tropical Cyclones. In: El Niño Southern Oscillation in a Changing Climate, McPhaden, M.J., Santoso, A. & Cai, W., ed(s). American Geophysical Union. pp.
(2020). Few-Layer In2S3 in Laponite Interlayers: A Colloidal Route Toward Heterostructured Nanohybrids with Enhanced Photocatalysis. Chemistry of Materials 32, 10015-10024. doi: http://dx.doi.org/10.1021/acs.chemmater.0c03207 – Energy transition.
(2020). Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Science Advances 6, 8. doi: http://dx.doi.org/10.1126/sciadv.aaz4876 – Earth system science.
(2020). Carbon limits non-linear response of nitrous oxide (N2O) to increasing N inputs in a highly-weathered tropical soil in Sri Lanka. Agriculture, Ecosystems & Environment 292, 106808. doi: https://doi.org/10.1016/j.agee.2019.106808 – Climate change.
(2020). Application of a High-Resolution Distributed Hydrological Model on a U.S.-Canada Transboundary Basin: Simulation of the Multiyear Mean AnnualHydrograph and 2011 Flood of theRichelieu River Basin. Journal of Advances in Modeling Earth Systems 12, e2019MS001709. doi: https://doi.org/10.1029/2019MS001709 – Earth system science.
(2020). Benzothiazolium-functionalizedNU-1000: a versatile material for carbon dioxide adsorption and cyanide luminescence sensing. Journal of Materials Chemistry C 8, 7492-7500. doi: http://dx.doi.org/10.1039/d0tc01436b – Energy transition.
(2020). Boosting nitrogen-doping and controlling interlayer spacing in pre-reduced graphene oxides. Nano Energy 78, 105286. doi: https://doi.org/10.1016/j.nanoen.2020.105286 – Energy transition.
(2020). Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa. Atmospheric Measurement Techniques 13, 3873-3892. doi: http://dx.doi.org/10.5194/amt-13-3873-2020 – Climate change.
(2020). Nitrate removal and greenhouse gas production of woodchip denitrification walls under a humid subtropical climate. Ecological Engineering 156, 105988. doi: https://doi.org/10.1016/j.ecoleng.2020.105988 – Climate change.
(2020). Longshore drift produced by climate-modulated monsoons and typhoons in the South China Sea. Journal of Marine Systems 211, 103399. doi: https://doi.org/10.1016/j.jmarsys.2020.103399 – Earth system science.
(2020). Assessing the skill of all-season diverse Madden–Julian oscillation indices for the intraseasonal Amazon precipitation. Climate Dynamics 54, 3729-3749. doi: http://dx.doi.org/10.1007/s00382-020-05202-9 – Climate change.
(2020). Large global variations in measured airborne metal concentrations driven by anthropogenic sources. Scientific Reports 10, 21817. doi: http://dx.doi.org/10.1038/s41598-020-78789-y – Earth system science.
(2020). Using Ra-226 and Ra-228 isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago. Biogeosciences 17, 4937-4959. doi: http://dx.doi.org/10.5194/bg-17-4937-2020 – Earth System Science.
(2020). A Catalytic Approach for Enantioselective Synthesis of Homoallylic Alcohols Bearing a Z-Alkenyl Chloride or Trifluoromethyl Group. A Concise and Protecting Group-Free Synthesis of Mycothiazole. Journal of the American Chemical Society 142, 436-447. doi: http://dx.doi.org/10.1021/jacs.9b11178 – Climate change.
(2020). From research to policy: optimizing the design of a national monitoring system to mitigate soil nitrous oxide emissions. Current Opinion in Environmental Sustainability 47, 28-36. doi: https://doi.org/10.1016/j.cosust.2020.06.003 – Climate change.
(2020). Observed and Projected Hydroclimate Changes in the Andes. Frontiers in Earth Science 8. doi: http://dx.doi.org/10.3389/feart.2020.00061 – Climate change.
(2020). Combined effect of nitrogen fertiliser and leaf litter carbon drive nitrous oxide emissions in tropical soils. Nutrient Cycling in Agroecosystems 118, 207-222. doi: http://dx.doi.org/10.1007/s10705-020-10094-6 – Climate change.
(2020). Rationally designed CuSb1-xBixS2 as a promising photovoltaic material: Theoretical and experimental study. Scripta Materialia 179, 107-112. doi: https://doi.org/10.1016/j.scriptamat.2020.01.008 – Energy transition.
(2020). Deconvolution of boundary layer depth and aerosol constraints on cloud water path in subtropical stratocumulus decks. Atmos. Chem. Phys. 20, 3609-3621. doi: http://dx.doi.org/10.5194/acp-20-3609-2020 – Climate change.
(2020). High Impact Weather Events in the Andes. Frontiers in Earth Science 8. doi: http://dx.doi.org/10.3389/feart.2020.00162 – Climate change.
(2020). Constraining the Twomey effect from satellite observations: issues and perspectives. Atmos. Chem. Phys. 20, 15079-15099. doi: http://dx.doi.org/10.5194/acp-20-15079-2020 – Climate change.
(2020). Epigenetic inheritance: a decade into the extended evolutionary synthesis. Paradigmi XXXVIII, 463-494. doi: http://dx.doi.org/10.30460/99624 – Earth System Science.
(2020). Soil type, bulk density and drainage effects on relative gas diffusivity and N2O emissions. Soil Research 58, 726-736. doi: https://doi.org/10.1071/SR20161 – Climate change.
(2020). Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Climate Dynamics 54, 4169-4189. doi: http://dx.doi.org/10.1007/s00382-020-05223-4 – Climate change.
(2020). Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes. Atmospheric Research 234. doi: http://dx.doi.org/10.1016/j.atmosres.2019.104711 – Climate change.
(2020). The role of prior assumptions in carbon budget calculations. Earth System Dynamics 11, 563-577. doi: http://dx.doi.org/10.5194/esd-11-563-2020 – Climate change.
(2020). Relating climate sensitivity indices to projection uncertainty. Earth System Dynamics 11, 721-735. doi: http://dx.doi.org/10.5194/esd-11-721-2020 – Climate change.
(2020). A fiery wake-up call for climate science. Nature Climate Change 10, 175-176. doi: http://dx.doi.org/10.1038/s41558-020-0712-5 – Climate change.
(2020). A fiery wake-up call for climate science. Nature Climate Change 10, 175-177. doi: http://dx.doi.org/10.1038/s41558-020-0707-2 – Climate change.
(2020). Assessing the costs of historical inaction on climate change. Scientific Reports 10, 9173. doi: http://dx.doi.org/10.1038/s41598-020-66275-4 – Climate change.
(2020). Estimating global terrestrial denitrification from measured N2O:(N2O?+?N2) product ratios. Current Opinion in Environmental Sustainability 47, 72-80. doi: https://doi.org/10.1016/j.cosust.2020.07.005 – Climate change.
(2020). Editorial Overview: Climate change, reactive nitrogen, food security and sustainable agriculture – the case of N2O. Current Opinion in Environmental Sustainability 47, A1-A4. doi: https://doi.org/10.1016/j.cosust.2020.11.001 – Climate change.
(2020). MorphoCluster: Efficient Annotation of Plankton Images by Clustering. Sensors (Basel) 20. doi: http://dx.doi.org/10.3390/s20113060 – Earth system science.
(2020). The impact of intertidal areas on the carbonate system of the southern North Sea. Biogeosciences 17, 4223-4245. doi: http://dx.doi.org/10.5194/bg-17-4223-2020 – Earth System Science.
(2020). Recent changes in the precipitation-driving processes over the southern tropical Andes/western Amazon. Climate Dynamics 54, 2613-2631. doi: http://dx.doi.org/10.1007/s00382-020-05132-6 – Climate change.
(2020). Transpiration difference under high evaporative demand in chickpea (Cicer arietinum L.) may be explained by differences in the water transport pathway in the root cylinder. Plant Biology 22, 769-780. doi: https://doi.org/10.1111/plb.13147 – Climate change.
(2020). Hot trends and impact in permafrost science. Permafrost and Periglacial Processes 31, 461-471. doi: https://doi.org/10.1002/ppp.2047 – Earth system science.
(2020). Air pollution in Kigali, Rwanda: spatial and temporal variability, source contributions, and the impact of car-free Sundays. Clean Air Journal 30, 1-15. doi: http://dx.doi.org/10.17159/caj/2020/30/2.8023 – Climate change.
(2020). Mismatches between the resources for adult herbivores and their offspring suggest invasive Spartina alterniflora is an ecological trap. Journal of Ecology 108, 719-732. doi: https://doi.org/10.1111/1365-2745.13277 – Earth System Science.
(2020). Continental-scale geographic change across Zealandia during Paleogene subduction initiation. Geology 48, 419-424. doi: http://dx.doi.org/10.1130/g47008.1 – Earth System Science.
(2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of The Total Environment 706, 136033. doi: https://doi.org/10.1016/j.scitotenv.2019.136033 – Energy transition.
(2020). Ocean acidification causes variable trait-shifts in a coral species. Global Change Biology 26, 6813-6830. doi: https://doi.org/10.1111/gcb.15372 – Earth system science.
(2020). Nonlinear ionization dynamics of hot dense plasma observed in a laser-plasma amplifier. Light: Science & Applications 9, 187. doi: http://dx.doi.org/10.1038/s41377-020-00424-2 – Energy transition.
(2020). Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Materials 8, 070901. doi: http://dx.doi.org/10.1063/5.0011851 – Energy transition.
(2020). Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutrient Cycling in Agroecosystems 116, 41-56. doi: http://dx.doi.org/10.1007/s10705-019-10028-x – Climate change.
(2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today 357, 214-220. doi: http://dx.doi.org/10.1016/j.cattod.2019.02.050 – Energy transition.
(2020). Theoretical dopant screening and processing optimization for vanadium disulfide as cathode material for Li-air batteries: A density functional theory study. Applied Surface Science 508, 145276. doi: https://doi.org/10.1016/j.apsusc.2020.145276 – Energy transition.
(2020). Delineating the Seasonally Modulated Nonlinear Feedback Onto ENSO From Tropical Instability Waves. Geophysical Research Letters 47, e2019GL085863. doi: https://doi.org/10.1029/2019GL085863 – Earth system science.
(2020). Future projection of greenhouse gas emissions due to permafrost degradation using a simple numerical scheme with a global land surface model. Progress in Earth and Planetary Science 7, 14. doi: http://dx.doi.org/10.1186/s40645-020-00366-8 – Earth system science.
(2020). Efficient High-order Optical Harmonics Generation from Resonant Semiconductor Metasurfaces Supporting Bound States in the Continuum. Proceedings of the Washington, DC, 2020/09/14. Frontiers in Optics / Laser Science: FTh5D.4. doi: http://dx.doi.org/10.1364/FIO.2020.FTh5D.4 – Energy transition.
(2020). High-Harmonic Generation in Dielectric Metasurfaces Empowered by Bound States in the Continuum. Proceedings of the Washington, DC, 2020/05/10. Conference on Lasers and Electro-Optics: FTh1C.5. doi: http://dx.doi.org/10.1364/CLEO_QELS.2020.FTh1C.5 – Energy transition.
(2019). Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000-2017). International Journal of Applied Earth Observation and Geoinformation 77, 119-128. doi: http://dx.doi.org/10.1016/j.jag.2018.12.013 – Climate change.
(2019). On the key influence of remote climate variability from Tropical Cyclones, North and South Atlantic mid-latitude storms on the Senegalese coast (West Africa). Environmental Research Communications 1. doi: http://dx.doi.org/10.1088/2515-7620/ab2ec6– Earth system science.
(2019). Decline of Fine Suspended Sediments in the Madeira River Basin (2003–2017). Water 11, 514. doi: https://doi.org/10.3390/w11030514 – Climate change.
(2019). On the Relationship between Suspended Sediment Concentration, Rainfall Variability and Groundwater: An Empirical and Probabilistic Analysis for the Andean Beni River, Bolivia (2003–2016). Water 11. doi: http://dx.doi.org/10.3390/w11122497 – Climate change.
(2019). Second Youth of a Metal-Free Dehydrogenation Catalyst: When gamma-Al2O3 Meets Coke Under Oxygen- and Steam-Free Conditions. Acs Catalysis 9, 9474-9484. doi: http://dx.doi.org/10.1021/acscatal.9b02555 – Energy transition.
(2019). Hydrogenolysis of Dinuclear PCN (R) Ligated Pd-II mu-Hydroxides and Their Mononuclear Pd-II Hydroxide Analogues. Chemistry-a European Journal 25, 9920-9929. doi: http://dx.doi.org/10.1002/chem.201900507 – Energy transition.
(2019). Comment: Model and manage the changing geopolitics of energy. In Nature, pp. 29-31. doi:https://www.nature.com/articles/d41586-019-01312-5 – Energy transition.
(2019). Reproducing Internal Variability with Few Ensemble Runs. Journal of Climate 32, 8511-8522. doi: http://dx.doi.org/10.1175/jcli-d-19-0280.1 – Climate change.
(2019). Engineered Nitrogen-Decorated Carbon Networks for the Metal-Free Catalytic Isomerization of Glucose to Fructose. Acs Sustainable Chemistry & Engineering 7, 16959-16963. doi: http://dx.doi.org/10.1021/acssuschemeng.9b04067 – Energy transition.
(2019). p-Type Conductivity of Hydrated Amorphous V2O5 and Its Enhanced Photocatalytic Performance in ZnO/V2O5/rGO. ACS Applied Electronic Materials 1, 1881-1889. doi: http://dx.doi.org/10.1021/acsaelm.9b00397 – Energy transition.
(2019). Material design for Ge2Sb2Te5 phase-change material with thermal stability and lattice distortion. Scripta Materialia 170, 16-19. doi: https://doi.org/10.1016/j.scriptamat.2019.05.024 – Energy transition.
(2019). Interface-Driven Phase Transition of Phase-Change Material. Crystal Growth & Design 19, 2123-2130. doi: http://dx.doi.org/10.1021/acs.cgd.8b01690 – Energy transition.
(2019). Cloud Ice Processes Enhance Spatial Scales of Organization in Arctic Stratocumulus. Geophysical Research Letters 46, 14109-14117. doi: https://doi.org/10.1029/2019GL084959 – Climate change.
(2019). Regional hydro-climatic changes in the Southern Amazon Basin (Upper Madeira Basin) during the 1982-2017 period. Journal of Hydrology-Regional Studies 26. doi: http://dx.doi.org/10.1016/j.ejrh.2019.100637 – Climate change.
(2019). Taking climate model evaluation to the next level. Nature Climate Change 9, 102-110. doi: http://dx.doi.org/10.1038/s41558-018-0355-y – Climate change.
(2019). Parametric Controls on Vegetation Responses to Biogeochemical Forcing in the CLM5. Journal of Advances in Modeling Earth Systems 11, 2879-2895. doi: http://dx.doi.org/10.1029/2019ms001609 – Climate change.
(2019). Measuring denitrification and the N2:N2O emission ratio from agricultural systems. Proceedings of the workshop on “Climate change, reactive nitrogen, food security and sustainable agriculture” 15-16 April, 2019 Garmisch-Partenkirchen, Germany. Proceedings of. doi: https://mopga.imk-ifu.kit.edu/sites/mopga/files/downloads/files/Extended%20Abstract%20Johannes%20Friedl.pdf – Climate change.
(2019). The existence and impact of persistent ferroelectric domains in MAPbI 3. Science Advances 5, eaas9311. doi: http://dx.doi.org/10.1126/sciadv.aas9311 – Energy transition.
(2019). Trends in MODIS and AERONET derived aerosol optical thickness over Northern Europe. Tellus B: Chemical and Physical Meteorology 71, 1554414. doi: http://dx.doi.org/10.1080/16000889.2018.1554414 – Climate change.
(2019). Background Conditions Influence the Estimated Cloud Radiative Effects of Anthropogenic Aerosol Emissions From Different Source Regions. Journal of Geophysical Research: Atmospheres 124, 2276-2295. doi: http://dx.doi.org/10.1029/2018jd029644 – Earth system science.
(2019). A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renewable and Sustainable Energy Reviews 100, 127-142. doi: https://doi.org/10.1016/j.rser.2018.10.017 – Energy transition.
(2019). Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy & Environmental Science 12, 2443-2454. doi: http://dx.doi.org/10.1039/C9EE00950G – Energy transition.
(2019). Water Splitting: Electronically Double-Layered Metal Boride Hollow Nanoprism as an Excellent and Robust Water Oxidation Electrocatalysts (Adv. Energy Mater. 13/2019). Advanced Energy Materials 9, 1970038. doi: https://doi.org/10.1002/aenm.201970038 – Energy transition.
(2019). Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources. Structural Dynamics 6, 010902. doi: http://dx.doi.org/10.1063/1.5082686 – Energy transition.
(2019). Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. Journal of Materials Chemistry A 7, 3592-3602. doi: http://dx.doi.org/10.1039/C8TA10142F – Energy transition.
(2019). High-frequency variability of CO2 in Grand Passage, Bay of Fundy, Nova Scotia. Biogeosciences 16, 605-616. doi: http://dx.doi.org/10.5194/bg-16-605-2019 – Earth System Science.
(2019). Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nature Climate Change 9, 747-+. doi: http://dx.doi.org/10.1038/s41558-019-0566-x – Earth system science.
(2019). Improving Electrochemical Pb2+ Detection Using a Vertically Aligned 2D MoS2 Nanofilm. Analytical Chemistry 91, 11770-11777. doi: http://dx.doi.org/10.1021/acs.analchem.9b02382 – Energy transition.
(2019). Spatiotemporal Patterns of Chaos in the Atlantic Overturning Circulation. Geophysical Research Letters 46, 7509-7517. doi: https://doi.org/10.1029/2019GL082552 – Earth system science.
(2019). Amine additive reactions induced by the soft Lewis acidity of Pb 2+ in halide perovskites. Part I: evidence for Pb–alkylamide formation. Journal of Materials Chemistry C 7, 5251-5259. doi: http://dx.doi.org/10.1039/c8tc04871a – Energy transition.
(2019). Amine additive reactions induced by the soft Lewis acidity of Pb 2+ in halide perovskites. Part II: impacts of amido Pb impurities in methylammonium lead triiodide thin films. Journal of Materials Chemistry C 7, 5244-5250. doi: http://dx.doi.org/10.1039/c8tc04872j – Energy transition.
(2019). Reactions at noble metal contacts with methylammonium lead triiodide perovskites: Role of underpotential deposition and electrochemistry. APL Materials 7, 041103. doi: http://dx.doi.org/10.1063/1.5083812 – Energy transition.
(2019). Laser-engineered oxygen vacancies for improving the NO2 sensing performance of SnO2 nanowires. Journal of Materials Chemistry A 7, 27205-27211. doi: http://dx.doi.org/10.1039/C9TA06578D – Energy transition.
(2019). Cycling and atmospheric exchanges of selenium in Canadian subarctic thermokarst ponds. Biogeochemistry 145, 193-211. doi: http://dx.doi.org/10.1007/s10533-019-00599-w – Earth system science.
(2019). The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems 11, 4245-4287. doi: http://dx.doi.org/10.1029/2018ms001583 – Climate change.
(2019). Electronically-Coupled Phase Boundaries in a-Fe2O3/Fe3O4 Nanocomposite Photoanodes for Enhanced Water Oxidation. ACS Applied Nano Materials 2, 334-342. doi: http://dx.doi.org/10.1021/acsanm.8b01936 – Energy transition.
(2019). The Impact of Future Fuel Consumption on Regional Air Quality in Southeast Asia. Scientific Reports 9, 2648. doi: http://dx.doi.org/10.1038/s41598-019-39131-3 – Earth system science.
(2019). High Versatility and Stability of Mechanochemically Synthesized Halide Perovskite Powders for Optoelectronic Devices. Acs Applied Materials & Interfaces 11, 30259-30268. doi: http://dx.doi.org/10.1021/acsami.9b09160 – Energy transition.
(2019). Ammonia borane and hydrazine bis(borane) dehydrogenation mediated by an unsymmetrical (PNN) ruthenium pincer hydride: metal-ligand cooperation for hydrogen production. Sustainable Energy & Fuels 3, 2583-2596. doi: http://dx.doi.org/10.1039/c9se00241c – Energy transition.
(2019). Benzoimidazole-Pyridylamido Zirconium and Hafnium Alkyl Complexes as Homogeneous Catalysts for Tandem Carbon Dioxide Hydrosilylation to Methane. Chemcatchem 11, 495-510. doi: http://dx.doi.org/10.1002/cctc.201800077 – Energy transition.
(2019). H-2 production from lightweight inorganic hydrides catalyzed by 3d transition metals. International Journal of Hydrogen Energy 44, 25746-25776. doi: http://dx.doi.org/10.1016/j.ijhydene.2019.08.017 – Energy transition.
(2019). Imidazole-Bridged Tetrameric Group(IV) Heteroleptic Complexes from the Spontaneous Metal-Ligand Assembly of a Potentially N-4-Tetradentate Ligand. European Journal of Inorganic Chemistry 2019, 4384-4393. doi: http://dx.doi.org/10.1002/ejic.201900763 – Energy transition.
(2019). Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements. Atmos. Chem. Phys. 19, 11315-11342. doi: http://dx.doi.org/10.5194/acp-19-11315-2019 – Climate change.
(2019). Foraminifera Trace Anthropogenic CO2 in the NW Atlantic by 1950. Geophysical Research Letters 46, 14683-14691. doi: https://doi.org/10.1029/2019GL084965 – Earth System Science.
(2019). Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Molecular Systems Design & Engineering 4, 1000-1013. doi: http://dx.doi.org/10.1039/c9me00062c – Energy transition.
(2019). Trends of Ocean Acidification and pCO2 in the Northern North Sea, 2003–2015. Journal of Geophysical Research: Biogeosciences 124, 3088-3103. doi: https://doi.org/10.1029/2018JG004992 – Earth System Science.
(2019). In situ reduction and exfoliation of g-C3N4 nanosheets with copious active sites via a thermal approach for effective water splitting. Catalysis Science & Technology 9, 1004-1012. doi: http://dx.doi.org/10.1039/C8CY02318B – Energy transition.
(2019). Mr. Bolsonaro’s policies threat the provision of ecosystem services in the Amazon River basin, water supply and the sustainable development of South America. eLetters – Science 365, 419. doi: http://dx.doi.org/0.1126/science.365.6452.419 – Climate change.
(2019). Stärkung der internationalen Zusammenarbeit für eine globale Energiewende. In IASS Policy Briefs. doi:https://publications.iass-potsdam.de/pubman/item/item_4208893 – Energy transition.
(2019). Advancing a global transition to clean energy – the role of international cooperation. Economics: The Open-Access, Open-Assessment E-Journal 13, 1-18. doi: http://dx.doi.org/10.5018/economics-ejournal.ja.2019-48 – Energy transition.
(2019). National food production stabilized by crop diversity. Nature 571, 257-+. doi: http://dx.doi.org/10.1038/s41586-019-1316-y – Climate change.
(2019). Climate change, migration and health systems resilience: Need for interdisciplinary research [version 2; peer review: 1 approved, 3 approved with reservations]. F1000Research 8. doi: http://dx.doi.org/10.12688/f1000research.17559.2 – Climate change.
(2019). The End of the Wait for Climate Sensitivity? Geophysical Research Letters 46, 12289-12292. doi: http://dx.doi.org/10.1029/2019gl084685 – Climate change.
(2019). Informing Future Risks of Record-Level Rainfall in the United States. Geophysical Research Letters 46, 3963-3972. doi: http://dx.doi.org/10.1029/2019gl082362 – Climate change.
(2019). Metal-free carbon-based materials for electrocatalytic and photo-electrocatalytic CO2 reduction. Rendiconti Lincei-Scienze Fisiche E Naturali 30, 497-513. doi: http://dx.doi.org/10.1007/s12210-019-00830-8 – Energy transition.
(2019). Addressing nitrous oxide: An often ignored climate and ozone threat. Policy Brief of the workshop on “Climate change, reactive nitrogen, food security and sustainable agriculture” Garmisch-Partenkirchen, Germany. Proceedings of. doi: http://www.oecd.org/agriculture/crp/documents/climate-change-reactive-nitrogen-food-security-sustainable-agriculture-workshop-policy-brief.pdf. – Climate change.
(2019). Halide Perovskites: Is It All about the Interfaces? Chemical Reviews 119, 3349-3417. doi: http://dx.doi.org/10.1021/acs.chemrev.8b00558 – Energy transition.
(2019). Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes. Atmos. Meas. Tech. 12, 607-618. doi: http://dx.doi.org/10.5194/amt-12-607-2019 – Climate change.
(2019). Aerosol-type classification based on AERONET version 3 inversion products. Atmos. Meas. Tech. 12, 3789-3803. doi: http://dx.doi.org/10.5194/amt-12-3789-2019 – Climate change.
(2019). The Permafrost Young Researchers Network (PYRN) is getting older: The past, present, and future of our evolving community. Polar Record 55, 216-219. doi: http://dx.doi.org/10.1017/S0032247418000645 – Earth system science.
(2019). Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation and Recycling 149, 413-426. doi: https://doi.org/10.1016/j.resconrec.2019.05.003 – Energy transition.
(2019). Beyond optical profiling – innovative use of the lidar technique in atmospheric research. doi:https://www.physgeo.uni-leipzig.de/fileadmin/Fakult%C3%A4t_PhysGeo/Meteorologie/Dokumente/Tesche/2020_Habil_tesche.pdf. – Climate change.
(2019). 3+2?+?X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)? Atmos. Meas. Tech. 12, 4421-4437. doi: http://dx.doi.org/10.5194/amt-12-4421-2019 – Climate change.
(2019). Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance. Beilstein Journal of Nanotechnology 10, 1217-1227. doi: http://dx.doi.org/10.3762/bjnano.10.121 – Energy transition.
(2019). Amino-decorated bis(pyrazolate) metal-organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers 6, 533-545. doi: http://dx.doi.org/10.1039/c8qi00997j – Energy transition.
(2019). Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. Acs Applied Materials & Interfaces 11, 26956-26969. doi: http://dx.doi.org/10.1021/acsami.9b08015 – Energy transition.
(2019). Nickel Nanoparticles Decorated Nitrogen-Doped Carbon Nanotubes (Ni/N-CNT); a Robust Catalyst for the Efficient and Selective CO2 Methanation. Acs Applied Energy Materials 2, 1111-1120. doi: http://dx.doi.org/10.1021/acsaem.8b01681 – Energy transition.
(2019). Induction Heating: An Enabling Technology for the Heat Management in Catalytic Processes. Acs Catalysis 9, 7921-7935. doi: http://dx.doi.org/10.1021/acscatal.9b02471 – Energy transition.
(2019). Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis. Journal of Geophysical Research-Oceans 124, 5336-5375. doi: http://dx.doi.org/10.1029/2019jc015083 – Earth system science.
(2019). Countering the risk of an uneven low-carbon energy transition. In IASS Policy Briefs. doi:http://dx.doi.org/http://doi.org/10.2312/iass.2019.051 – Energy transition.
(2019). Assessing precipitation concentration in the Amazon basin from different satellite-based data sets. International Journal of Climatology 39, 3171-3187. doi: http://dx.doi.org/10.1002/joc.6009 – Climate change.